Category Archives: American Manufacturing

Fastener Facts from Engine Builder

Original article by Engine Builder >
Some of the most stressed out parts of a high-dollar performance engine are the relatively inexpensive nuts and bolts that hold it all together. If you’re building a performance engine – whether it’s for the street or the racetrack – using stock fasteners in the most critical areas could be asking for trouble. That tricked-out stroker crank and rods and flowed set of heads may be in jeopardy if you bolt it all together using stock or otherwise inferior fasteners.

No matter what the application, there is not one fastener that is right for every job.

Different materials and designs have different advantages in different applications, and selecting the right fastener for the job may be difficult at best when choosing from such a wide array of materials. Variables such as strength, temperature, movement, vibration and fatigue all come into play when deciding on the right bolt or stud. The following article details some of the basic definitions and facts about fasteners that’ll show you why not all fasteners are the same.

Tensile Strength

Tensile strength is the most common mechanical property that is referred to when talking about fastener strength. It is the maximum tension-applied load the fastener can support before it fractures.

Fatigue

Fatigue in a fastener can cause sudden, unexpected failures. A fatigued fastener can fail even when loads are below the strength of the material due to operating under constant cyclic loads. Fatigue strength is often defined as the maximum stress a fastener can withstand for a specified number of repeated cycles before it fails.

Some of the most important fasteners in the engine such as cylinder head bolts, connecting rod bolts and main bearing and cap bolts are subject to fatigue forces. It is important to use fasteners with high fatigue strength, as well as the tensile strength, to hold the joint together under high-pressure forces in these applications.

Torsion

Torsion strength is typically the amount of torque or friction a fastener can safely handle before it breaks. One thing to remember is that when torque is applied to a fastener, most of the input is spent in overcoming friction. Roughly 85-95 percent of the energy you have spent tightening the fastener is lost, leaving only about 5-15 percent in actual clampload. Because of this, any slight variation in friction can lead to significant changes in resulting preload conditions.

These variables include surface roughness, surface finish, lube, load-range, dimensions, temperature and torque sequence. This is why it’s so important to achieve consistent friction conditions and to use the methods that allow the most consistent torquing. So the preload target will depend on the lube you use (most use a Moly lube or 30 weight oil) and the tightening sequence.

Proof Load

Each material has a certain amount of elastic range, meaning the fastener can be stretched to a certain point but when the load is released it can return to the original shape. But if the load applied exceeds the elastic range and therefore causes the fastener to go past the yield point, it then reaches what is called the plastic range of the fastener. The fastener material is no longer able to return to original size.

The proof load is an applied tensile load that can be applied before permanent deformation. It represents the useable range of a fastener before it goes into its “plastic range” where it cannot return to its original size and shape. At this point of yield, permanent elongation of the fastener sets in. If you continued to load the fastener, it will reach its ultimate tensile strength in which “necking” or elongation occurs until it is stretched to the point of breakage.

Shear Strength

Shear strength is the maximum load a fastener can take before it fails when it is applied at a right angle to its axis. A load occurring in one transverse plane is called single shear, while a load that is applied in two planes, where a fastener may be sliced in three pieces, is called double shear.

Materials

Racing applications require high quality, precision tolerance fasteners to achieve the clampload and fatigue strength that is needed in a harsh environment where there are extreme forces placed against them. Materials used to make fasteners vary with the application and load carrying needs.

The most common high-grade material is medium carbon alloy steel that is used in making SAE J429 Grade 8 bolts. These bolts are often used by OEMs in high stress applications and in some racing applications and are rated at 150,000 psi tensile and 130,000 psi yield with a proof load of 120,000 psi.

“One of the issues with Grade 8 bolts is that there are some areas where you really don’t want to use them,” says Doc Hammett, Totally Stainless. “If there’s a cycling load on them you could start to get into trouble. A classic example was on the old belt drives where street rodders were using Grade 8 for accessories and they were breaking bolts all of a sudden. Many were left scratching their heads until someone figured out the bolts were fatigued. The higher the carbon steel the more they are prone to fatigue. Fastener manufacturers add other alloys to carbon steels and change the properties to suit their specific needs. This is one of the most interesting things about steel: you can add a little bit of something and make the properties change drastically.”

Hammett says one of the biggest things that Totally Stainless has done recently is to introduce large high-strength stainless bolts. Stainless steel by definition is anything with at least 12 percent chromium in it. “There are over 1,000 different alloys of stainless,” says Hammett. “What people generally think of is 300 series stainless is generally a low strength material and is not heat treatable. The most common 300 series is an 18-8. It’s 18 percent chrome and 8 percent nickel. The tensile strength for 1/2? and larger 18-8 stainless bolts is no more than 80,000 psi and the yield strength is only 45,000 psi. We use 17-4 PH for our high-strength bolts, this material is heat treatable and has a tensile strength of 200,000 psi and a yield strength of 175,000. We electro polish them, which makes them more corrosion resistant.”

Don Trapp of A1 Technologies says his company starts out with the basic alloy 4340 or 8740 that is 190-ksi minimum. From that point it goes up to 280 ksi. “The 4340 or 8740 is already far above an OEM fastener in strength and quality. We use a lot of H11, which is a toolsteel for Top Fuel, Funny Car and some in Top Alcohol and Injected Nitro classes use it also. This is a 240 ksi minimum graded material.”

Trapp says almost every team in the top classes of drag racing uses this bolt material, because these cars are some of the most extreme applications. “As far as boost for superchargers and horsepower, to clamp a head and main studs down on a Top Fuel engine is a pretty extreme proposition. We also use this material quite a bit in Sport Compact classes because they use extreme boost levels in many cases. There are many teams running 60 lbs. of boost on top of high compression, so the cylinder pressures are what you would call extreme.”

The next step up from 4340 or 8740 steel is 1722 (AMS 6304). Manufacturer ARP calls it ARP 2000 and it’s all the same material, a 220 ksi material. The next step would be H11, which ARP calls L19. It too is the same material and also comes from Carpenter. Those are getting up to 240-250 ksi. You can go higher than that but it becomes brittle, according to Trapp.

The next step up include two materials: Custom Made 625 and Aerospace Material Specification (AMS) 5844. Trapp says A1 Technologies gets both materials from Carpenter as well. “The AMS 5844 has a trademark name MP35M, which means it’s multiphase,” says Trapp. MP35N is an age hardenable Nickel-Cobalt base alloy that has a unique combination of properties – ultra high strength, toughness, ductility and outstanding corrosion resistance. MP35N resists corrosion in hydrogen sulphide, salt water and other chloride solutions. ARP calls this material ARP 3.5.

Both of those materials are considered a super alloy and are a very high nickel base. The last two are stainless steels because there’s so much nickel in them. One is mostly nickel and the multiphase is Nickel-Cobalt. Right now the multiphase is about the strongest fastener material out there. But the material alone is $75 a pound before anyone begins making the fastener.

Preload

There is definitely a relationship between torque and preload, but there is some confusion as to the difference. With connecting rods it is not too difficult to use the stretch method and to measure the preload by measuring stretch. But in head bolts it is much more difficult to measure and you’re basically reliant on the torque wrench to stretch the bolt. A torque wrench needs to be recalibrated often and you need very clean threads that have been burnished in so there is very little friction. The preload is the force on the bolt that clamps the joint together. Torque, however, is just the mechanism used to get the desired preload.

Lubricants

There’s a huge difference in torque depending on what type of lube you use, whether it’s engine oil or extreme pressure lube (EPL), which is used quite a bit in NASCAR for instance. Trapp says A1 Technologies doesn’t recommend any particular type of lube. “We normally recommend that the higher the torque is the more efficient lube you use. It’s better for the fastener and the torsional stress. Friction can take up to 80 percent of the torque to overcome so the more you can reduce friction, the less torsional force you put on the fastener and the more effectively you’ll stretch the stud, which is really the goal.”

Head Studs

Generally, when you torque the stud you put a certain amount of stretch on it. The smallest diameter of the stud is where the stretch is going to occur. So if the threads are your smallest diameter, that’s where it will stretch. If you make the body smaller (undercut), then you begin to make the stretch in the body of the fastener be it a stud or a bolt, as opposed to making it occur in the threads. That’s why in a rod bolt, you rarely see one that doesn’t have an undercut. Head studs, depending on the application, you may have an undercut or you may have an in-between or full-body stud.

An in-between doesn’t elongate much while achieving its clampload as opposed to a full undercut stud that will actually elongate a little further. One stud may stretch .005? to achieve 20,000 lbs. of clampload. The other one may stretch .0075? to get the same amount of clampload.

You can reuse any bolt as long as you don’t get into the yield of the bolt and stay within 80 percent of its yield strength. You can still yield even a very strong fastener so it’s a one time only use fastener. It depends on what you want to design and what torque you utilize.

“There’s a whole world of fasteners out there that engine builders need and that industrial suppliers just don’t have. That’s why we are in business,” says Totally Stainless’ Doc Hammett. Keep this in mind next time you are looking for fasteners for your performance build.

Custom Bolts and Fasteners for Engine Manufacturing

Rush work, emergency orders…it’s not our first rodeo

Rush and emergency work have been in our DNA for a long time. The supply chain delivering the world’s goods can be interrupted, as we are seeing during the Covid-19 pandemic. Chicago Nut & Bolt has been keeping manufacturing lines running and products shipping for a long time. We can accommodate emergency and rush custom orders overnight or within a few hours.

As soon as our CNB representative or engineer receives your request and specifications though fax or email, pricing as well as delivery information is sent within minutes. The person who takes your order tracks the entire production schedule from production to packaging and final shipment. Finding a supplier that will produce your custom part is hard, but we are a company that can have your part ready just when you need it.

custom fastener bolts, emergency and rush work

Rush Orders Custom Bolts | Emergency Orders Custom Fasteners

Chicago Nut & Bolt Deemed an “Essential Business” During COVID-19 Pandemic

We are operating at full capacity.

The Department of Homeland Security has deemed that Chicago Nut & Bolt falls within the Critical Manufacturing Infrastructure Sector. As a business which falls within these guidelines, we’ll  continue to operate despite any Nationally or State ordered quarantine.

We qualify under several of the designated categories, as we support the following categories:  Earth moving, Mining, Agricultural, and Construction Equipment / Locomotive, Railroads & Transit Cars, and Rail Track Equipment.

At this time we will continue normal business hours.

 

Keeping Golden Gate Bridge in good shape as it turns 80

Original Article by Carl Nolte May 27, 2017 for The San Francisco Chronicle

As the Golden Gate Bridge was being built, Joseph Strauss, the chief engineer, was often asked: How long will the bridge last? His answer was always the same.

“Forever,” he said.

The famous span turns 80 on Saturday, not quite forever, but nearly a lifetime. And how long the bridge lasts depends on a small army of painters, ironworkers, electricians and engineers whose job over the years has taken them to the top and the bottom of the towers and everywhere else on the bridge.

Currently, the Golden Gate Bridge employs 32 painters, five painter laborers, 19 ironworkers, and three ironworker foremen, called “pushers” in the trade. A superintendent is in overall charge.

Though the painters are the most visible of the maintenance crew, it’s the ironworkers, who walk the high steel and build the scaffolding for the painters, who capture the public imagination.

“We have a nickname. They call us Sky Cowboys,” said Phillip Chaney, 57, the ironworker superintendent.

Their job is to replace rusting rivets with bolts, to build scaffolding for the painters and to make sure the bridge is sound.

“The paint protects the steel, but it’s the steel that holds up the bridge,” Chaney said.

“We have a corner office with a view,” said Darren McVeigh, 51, a second-generation ironworker who has been with the Golden Gate Bridge for 15 years and in the trade since 1982.

It’s “rough and dirty work,” McVeigh said, but it’s a good job.

Ironworkers report at 6:30 in the morning and are off by 3. It’s a union job, and the pay is good: $41.53 an hour, according to bridge district figures. It takes a four-year apprenticeship to become a journeyman, and Golden Gate work is especially prized in the trade: Bridge workers get 13 paid holidays, plus vacation.

In other jobs, McVeigh said, “When you don’t work, you don’t get paid.”

On the other hand, working on the Golden Gate presents special problems. The bridge crosses a strait on the edge of the Pacific Ocean, and the strait is famous for its wind and fog.

“Sometimes it cuts through you like a knife,” McVeigh said. “It’s brutal, just brutal. At the end of the day, all you can do is stand under a hot shower.”

The moisture from the fog and rain also add an element of danger to the work because it makes the steel slippery.

No one can be an ironworker who has a fear of heights, but the trade requires a finely honed sense of caution.

“You know the saying: ‘One hand for the company and one hand for yourself,’” McVeigh said.

All ironworkers on the bridge are required to wear a harness — 100 percent tie-off they call it — but there’s a trade-off. With layers of clothing on a chilly day, a body harness and a tool belt, ironworkers look like bears up on the steel. It makes it harder to move, to work.

Though 11 workers were killed during construction, there have been only two fatal accidents involving bridge crews in the past 80 years. In 1970, a painter fell to his death, and in 2003 an ironworker in the employ of a contractor died in an accident during a seismic retrofit project.

And there are also injuries, especially working with steel beams and building scaffolding.

“You get hand smashes and eye injuries, back injuries, bad knees,” McVeigh said.

They also face death, especially when someone is threatening suicide. Bridge workers are trained to intervene and will go to the railing to try to stop someone from jumping. “We put on a harness and tie-off so if they go, we are not going to go with them,” McVeigh said.

Like the others, he has talked some would-be jumpers off the edge. “I’ve lost count,” he said. “Maybe a dozen.”

In the next few years, a suicide barrier will be strung under the deck. The work won’t be done by in-house ironworkers, but by ironworkers hired by the contractors for the job.

The ironworkers’ main work at the bridge is keeping it standing. “There’s an old saying,” McVeigh said. “Rust never rests.”

Chaney points to a long color-coded chart in an engineering office near the toll plaza. It’s a conceptual printout of the bridge, showing the results of regular inspections: green for good steel, yellow for caution, red for problems.

Last year, the ironworkers spent a lot of time replacing some of the 600,000 rivets in the Marin tower. Rusted rivets are removed by a device called a “rivet buster” and are replaced with steel bolts.

Most of this year is devoted to building stages — “dance floors,” they are called — under the roadway deck, so old paint and some steel can be replaced. The stages are surrounded by tent-like structures that keep the old paint and debris from falling into the water.

It takes months to build the stages and the tenting, careful work done under the roadway. It’s not as dramatic as high work on the 746-foot-tall towers, but just as important.

There are other jobs, too. “I have guys working on greasing the bearings on the deck,” Chaney said. Like all suspension spans, the Golden Gate Bridge moves with the weight of traffic and with the wind. The steel moves. “You don’t want a stiff structure,” he said.

After the stages are done, the next big job will be to work on the San Francisco tower, where the effects of wind and rain have left the tower looking a bit shabby, as if it needs a new paint job. “It’s structurally sound,” Chaney said, “but not aesthetically.”

Not everybody can work on what may well be the most famous bridge in the world. Like others on the bridge, McVeigh is proud of it.

“When you are driving to work and see it in the windshield,” he said, “you say to yourself: ‘Wow! Look at this thing!’”

A quiet anniversary

It will be a quiet birthday Saturday when the Golden Gate Bridge turns 80.

Instead, the Golden Gate Bridge, Highway and Transportation District is inviting the public to post personal stories about the bridge on the bridge’s Facebook page and to Twitter @goldengatebridge, hashtag #GGB80 and #MyGGBstory.

The idea, the district says, is to “allow visitors from all over the world to join the fun.”

On the bridge’s 50th anniversary, in 1987, as many as 300,000 people walked on the bridge, causing the arch in the main span to flatten. The bridge staged an elaborate fireworks display on its 75th, in 2012. See Original Article >

Custom Bolts | Special Bolts | Custom Machined Bolts

How Custom Fasteners are Made

When companies in industries from agriculture to shipping need standard fasteners, they have plenty of options for purchasing them. But when a special part is needed, only a company that focuses on delivering custom fasteners will ensure a quick turnaround and superior product. At Chicago Nut & Bolt, custom work is what we do, and our custom fasteners can be made to any specifications in a timely manner that has impressed our clients for 20 years.

Despite the complex parts we have been able to produce during the past two decades, our process is simple. It begins when a client sends a blueprint for a part, which might be anything from a custom screw for a century-old bridge to a 6-ft. bolt for a crane. Based on the blueprint and specifications for features like a particular grade of steel or type of plating, we typically provide a quote within 24 hours. That’s our goal, and it’s an industry-leading turnaround.

Once we send the quote and it becomes an order, we coordinate with the manufacturers handling the multiple aspects of production that go into developing a custom order. Next, we continue to the vital step of quality control. During this testing phase, our experts check 30, 60 or even more dimensions, verifying them within a tolerance range. Only after all quality measures have been approved do we package the order. Along with the parts, we send certification that all material grade and strength properties have been met. Everything needed is shipped to the customer, but we also offer warehousing. That means, our customers have the option of making large orders and asking for their certified parts as needed.

There is a lot that goes into making custom fasteners, but because we have been doing precisely that for 20 years, we have a tested, step-by-step process that enables us to offer the quickest turnaround in the market.

Custom Machined BoltsCustom Fasteners | Custom Bolts

A Custom Fastener for the Mining Industry Shines Like Gold

Crafting just the right piece of hardware can sometimes feel like creating a piece of jewelry. And when custom bolts and nuts are needed to secure heavy equipment, absolute precision is necessary. A recent custom fastener we developed for hydraulic mining equipment both met the exacting tolerances of the blueprint and sparkled like a golden pendant thanks to its distinctive plating.

The client came to Chicago Nut & Bolt with an order to produce 2,500 custom pieces with several special features. First, the fastener had to be crafted from high-alloy hardened steel, which would provide considerable strength and resistance to corrosion. Because the mining equipment would be exposed to wet conditions, including ocean water, this high level of preservation was key. Second, the custom fasteners needed to feature internal and external threads so that they could be screwed both inside and out. Basically, it was a special nut and bolt combined in one piece.

Based on the client’s exacting blueprints, we began the process of filling this custom order by utilizing CNC machinery. Thanks to this advanced technology, the raw steel could be cut in a precise manner with a computer-controlled metal lathe. The CNC machine also added the interior and exterior threads to this special fastener. Next, the pieces were heat treated and finally plated, which created the gold sheen that makes the fasteners look like a modern piece of industrial-style jewelry. At each step in the process, our team performed a stringent quality inspection.

Finally, the 2,500 special fasteners were packaged to the customer’s specs and shipped. From blueprint to delivery, the process took about four weeks, although we have been known to create custom nuts and bolts as fast as overnight or within a few hours. That’s because our main capability is creating one-of-a-kind nuts and bolts in quantities from one to 1 million. Not every custom fastener we manufacture will look like a piece of jewelry, but every piece will always be just the right fit.

Chicago Nut & Bolt manufacturers custom large size fasteners, including bolts, nuts and screws per blue print. With over 20 years in the custom fastener business, Chicago Nut & Bolt supplies quantities from one to 1 million pieces and can also warehouse orders.

 

How Radically A High-Speed Train System Would Improve Travel In The US

Business Insider has broadcasted a video showing just how radically a high-speed train would revolutionize our traveling systems.  Hyperloop is in the making and has some great projects ahead to making this high-speed train a reality.

According to this video, the US railroad network is composed of about 140,000 miles of tracks. Many passengers travel by train at only 50 mph.  The top speed of the fastest train, AMTRACK, is on average anywhere between 80-90 MPH.

 

A new vision for high-speed trains would connect to all the U.S major cities of a 170,000  mile network.  Here is how it would be mapped out.

Safe Summer Travel – and the Components that Make it Possible

For many Americans, travel is a huge part of their summer plans. Spending the season on the open waters, cruising while enjoying the weather and scenery, is a favorite pastime. And while boarding these vessels and perfecting their tan, most people aren’t thinking about the components that go into shipbuilding. The same is true for the trains that bring countless American families to their destinations throughout the season.

For the ship and railroad builders, however, every component is critical, and of utmost priority is safety. Take fasteners, for instance. They’re small but crucial parts of these large modes of transportation, and safely getting from point A to point B depends on their quality.

Did you know that forensics have concluded that it might have been faulty fasteners that ultimately sunk the Titanic? While a lot of time has passed since that fateful voyage, what hasn’t changed is the importance of fasteners, and the need for quality construction and design.

At Chicago Nut & Bolt, we manufacture custom fasteners—inclusive of custom nuts, bolts, and screws—for a wide variety of industries and applications, including the ships and trains that bring people to and from their summer vacations.

We meet all specific requirements and sizes and make blanks in every imaginable head style—all the while making quality our number one priority.

As an ISO-certified, Fastener Quality Act-compliant company, using the most sophisticated testing and certification procedures, safety is always ensured, and the quality is always uncompromised.

The last thing travelers should have to worry about is the safety of their transportation; when companies choose to use our fasteners, it’s something no one has to worry about.

Custom Bolts | Custom Fasteners | Chicago Bolts | Special Bolts | Large Diameter Bolts | Custom Nuts | Special Nuts | Special Fasteners

Then US Manufacturing Story: What to Expect in 2015

2015 is all set to be a landmark year in the history of US manufacturing. The trend of sustainable growth as shown by 2014 is a presage of a potential boom in the sector. A long-awaited positive turn after the recent economic slump of the recession!

As per the discussions and opinions of leading analysts, 2015 will set the course for the engine of manufacturing to traverse. The Boston Consulting Group’s analysis has revealed the fact that the default choice of offshoring – China will no longer be able to hold on to its favored position. The mandate to provide minimum wage increases of 15 to 20 percentage points every year has reduced the cost benefit of manufacturing in China to 55% in 2014 and will further push it down to a dismal 39% in 2015. It is not hard to envision the disappearing allure of opening manufacturing units on foreign soil for every conceivable product irrespective of the demand in these offshore markets.

However, labor is not the only cost associated with manufacturing. Transportation, the cost of raw materials and obviously the cost of electric power all contribute heavily to determining the location of the factory. According to the US Energy Information Administration, crude oil production is all geared to touch a record high of 9.3 million b/d in 2015. Thus, the dwindling advantage of cheap labor can no longer offset the high cost of transportation across the seas. Under such circumstances, the abundance of fuel within the country is bound to sway decisions in favor of re-shoring.

Alternative energy production is also becoming more affordable and reliable. By 2040 15% of the global energy consumption will be attributed to alternatives and the US is right at the forefront of this trend promising inexpensive and readily available electricity to power manufacturing ventures.

The Markit Manufacturing Purchasing Managers’ Index (PMI) is also optimistic. It is sitting steady at 54.8 at the end of November, and this indicates a rise in the volume of bulk orders and sales to foreign markets.

The US manufacturing sector has always been the main impetus behind the growth of the nation. It drives two-thirds of all R&D efforts, and its workers are twice as productive as others enjoying higher wages and a better lifestyle. (*National Association of Manufacturers)

Considering major indicators – 2015 is shaping up to be the time to celebrate the return to glory of US manufacturing and will herald prosperity if all external factors co-operate.